Code No.: 14367 N/O

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. (E.E.E.) IV-Semester Main & Backlog Examinations, July-2023 **DC** Machines and Transformers

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

Q. No	Stem of the question	M	L	C	O PC
1,	Write the applications of the singly excited and doubly excited magnetic system.	1 2	1	1	1,2,
2.	What conditions are necessary for a magnetic field to produce a force on a conductor?		1	1	1,2,:
3.	Why armature core is laminated in DC machines?	2	1	2	1,2,3
4.	State the conditions under which a DC shunt generator fails to excite.	2	2	2	1,2,3
5.	Why DC Series motor is called a Variable speed motor?	2	1	3	
6.	Explain why the DC series motor should not start at no-load condition.	2	2	3	1,2,3
7.	Draw the vector diagram of an ideal transformer with R-L load.	2	3	4	122
8.	Why transformer rating is expressed in kVA?	2	1	4	1,2,3
9.	Draw Scott connection of a transformer.	2	3	5	1,2,3
10.	Write the advantages and disadvantages of an auto-transformer as compared to a two-winding transformer.	2	1	5	1,2,3 1,2,3
	Part-B $(5 \times 8 = 40 \text{ Marks})$				
1. a)	A coil of 1000 turns carrying a current of 5 Amps produces a flux of 2 mWb. Calculate the self-inductance of the coil.	4	4	1	1,2,3
b)	Give the expressions for Hysteresis losses and Eddy current losses and illustrate the various ways to minimize them	4	2	1	1,2,3
	Explain the Armature Reaction in D.C machine.	4	2	2	122
1	Two Shunt generators are connected in parallel to supply a load of 5000 A. Each machine has a armature resistance of 0.03 ohm and field resistance of 60 ohm. EMF on one machine is 600V and in other machine is 640V. What power does each machine supply?	4	4		1,2,3

Code No.: 14367 N/O

:: 2 ::

		outros.			7
13. a)	Draw and explain various speed control methods of DC shunt motor.	4	3	3	1,2,3
b)	A 440 V DC shunt motor takes 4A at no load. Its armature and	4	4	3	1,2,3
0)	field resistances are 0.4 ohms and 220 ohms respectively. Estimate the kW output when the motor takes 40A on full load.		7		
14. a)	Derive an expression for the emf of an ideal transformer.	4	3	4	1,2,3
b)	Obtain the approximate equivalent circuit of a given 200/2000 V 1-phase, 30kVA transformer having following test results	4	4	4	1,2,3
	OC test: 200V, 6.2A, 360W on LV side				
	SC test: 70V, 15A, 600W on HV side				
15. a)	Explain why the open-delta transformer connection is limited to supplying 57.7 percent of a normal delta - delta transformer bank load.	4	2	5	1,2,3
b)	Why auto-transformers can handle more power than conventional transformers of the same size? Explain with suitable example	4	2	5	1,2,3
16. a)	Draw the magnetic field created by the electro magnet and permanent magnet.	4	3	1	1,2,
b)	Explain the function of interpoles and compensating windings.	4	2	2	1,2,
17.	Answer any two of the following:				
a)	Explain the working, operation of the Swinburne's test on DC Motor in detail.	4	2	3	1,2,
b	What is sumpner's test? Explain in brief with circuit diagram.	4	1	4	1,2
c	. 1:05 -t -vector group connections of 3-Phase	4	3	5	1,2

M : Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

	Blooms Taxonomy Level – 1	20%
1)	Blooms Taxonomy Level – 2	35%
11)	Blooms Taxonomy Level = 3 & 4	45%
iii)	Blooms Taxonomy Level – 3 & 4	
